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Fermion 

An isomorphism between fully quantized ferrnion and boson fluids and classical 
polymer mixtures is used as a point of departure to initiate an analytic treat- 
ment of quantum fluids. 
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1. INTRODUCTION 

Among the many accomplishments of Oliver Penrose, his work on quantum 
fluids stands out. (~) It seems especially appropriate, therefore, to submit to 
this festschrift volume a contribution on quantized systems. 

In the late 1950s and early 1960s there was a great proliferation of 
perturbative treatments of the statistical mechanics of quantum fluids that 
culminated in a number of formally exact expansion procedures for treating 
the thermodynamics and structure of fluids of interacting particles (see, e.g., 
ref. 2). These permitted the correction of ideal-gas results through the use 
of expansions in fugacity, but for technical reasons the resummations 
necessary to obtain the pressure of a quantum fluid directly in terms of the 
number density proved much more cumbersome than in the case of classi- 
cal fluids. One of the most powerful and elegant starting points for such 
results was Feynman's path-integral formulation of quantum mechanics, (3) 
which was used in particular in the path-integral approach of Montroll and 
Ward, (4) who introduced polymerlike elements they called torons to 
describe quantized bosons or fermions. 
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Twenty years later, further progress was made through the exploita- 
tion of the observation that the path-integral approach enables one to 
think of quantum problems as limiting cases of certain classical statistical 
mechanical problems, since a path integral can be regarded as a limit of 
approximating sums that can be thought of as classical configuration 
integrals/5-7~ Barker tSI pointed out the way this observation can be used to 
extend classical Monte Carlo simulation methods to quantized systems, 
and Hoye and Stell, ~71 Thompson et al., ~8~ and others ~9'~~ showed how it 
could be used to treat the quantized internal degrees of freedom of fluid 
particles, such as those responsible for polarizability, using analytic liquid- 
state methods already developed for classical fluids. A more far-reaching 
observation in this connection was made by Chandler and Wolynes, ~6~ who 
noted a very general isomorphism between interacting fermion and boson 
systems and a classical system of interacting polymers, described in a 
continuum infinite-monomer limit. 

This article has two main purposes. The first is essentially pedagogic-- 
we call attention to the relationship between the Montroll-Ward and 
Chandler-Wolynes results, which makes it possible to unify conceptually 
the considerable development of the 1960s based on the Montroll-Ward 
toron formalism and the substantial body of more recent work based on 
the polymer picture. 

The second aim of this paper is to initiate an analytic study based on 
the polymer picture that goes beyond existing results. The polymer picture 
is the starting point for a significant fraction t~3~ of the extensive modern 
literature on path-integral simulations of quantum systems. However, 
analytic path-integral studies using the polymer picture have been largely 
restricted to lattice-model studies, ~4~ to certain few-particle problems, ~5~ 
or to investigations in which only the internal degrees of freedom in fluid 
systems have been treated quantum mechanically/7-~2~ In each of these 
analytic studies, the full problem of quantum indistinguishability and 
statistics has been avoided. On the other hand, the fully quantized models 
considered in the much earlier studies using the Montroll-Ward formalism, 
such as the quantum plasma ~ ~6~ and the Bose gas of interacting particles ~ ~7~ 
have for the most part not been reinvestigated using analytic methods that 
fully exploit the potential power of the isomorphism between quantum and 
classical systems. These methods hinge on the availability of the recipes of 
classical statistical mechanics developed since the 1950s that yield through 
functional differentiation and topological reduction expressions for the 
logarithm of the partition function and its associated n-point distribution 
and correlation functions in terms of number density, as well as a variety 
of classical thermodynamic perturbation theories/~8~ Here we shall obtain 
some fundamental reference-system results for free fermions and bosons in 
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a form appropriate to their use as ingredients in a dense-fluid perturbation 
theory, which we shall continue to develop elsewhere. We also include a 
brief development for charged bosons or fermions that yields the Debye 
shielding for such systems as well as some remarks concerning fully quan- 
tized particles on a lattice. 

In Section 2 we demonstrate the isomorphism between a fully quan- 
tized system of bosons or fermions and a classical polymer system. Our 
demonstration is that of Chandler and Wolynes, but organized a bit dif- 
ferently. In Section 3 we go on to establish some reference-system results 
using the polymer picture, as well as the charged-particle and lattice-system 
results. Some of the reference-system and charged-particle results are equiv- 
alent to results already obtained or implicit in the earlier literature, but 
they are expressed somewhat differently by us and obtained by us in a con- 
siderably more economical fashion that we believe illustrates the power of 
the polymer picture. 

In 1957, Montrol and Ward ~41 wrote, "In view of the difficulties 
encountered in the computation of classical cluster-integrals, we cannot 
expect to breeze through the explicit calculation of their quantum-mechani- 
cal counterparts." Our results do not alter the continued validity of this 
observation, but by using the isomorphism with classical polymers we 
easily eliminate the fugacity in favor of the density as an independent 
variable, which immediately facilitates the application of liquid-state 
perturbation theories. 

In this connection, the use of y expansions ~8"t91 and the related self- 
consistent y ordering <~8'-'~ that leads to the mean-spherical approximation 
(MSA) as a low-order result ~8'-'~ seem especially promising. Such ordering 
in the context of the MSA has already proved extremely fruitful in the 
partially-quantized polarizable fluid case. 17 i_,~ The isomorphism between 
fully quantized systems and polymer models can be readily extended to 
lattice systems, ~9~ to which y-ordering remains applicable. Tight-binding 
and Hubbard models are such systems that lend themselves to our 
approach, as we discuss in Section 3. 

2. THE PATH- INTEGRAL REPRESENTATION AND ITS 
EQUIVALENCE TO A CLASSICAL POLYMER DESCRIPTION 

2.1. Derivation 

The partition function of a quantum mechanical system is defined by 

Z = Tr e - a n  = ~ ($,,l e - P "  ]$,,) 
n 
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where H is the Hamil tonian  opera tor  and ~,, are the eigenfunctions of  the 
system or some other complete set of eigenfunctions (or eigenstates) that 
are normalized. As shown, e.g., in ref. 5, this may be rewritten as a path 
integral. For  a single particle this is given by Eq. (16) of  ref. 5 as the limit 
Z = l imN~ ~ Z ~N), where 

Z ' m - - f e x p  - -~(Sp+l-Sp)2-~F]~(sp ) H (Adsq) 
p = O  q = O  

( l a )  

with 

a= ( he )~ 2 and A \ 2n~l ] ( lb )  

Here the path  of length fl = r/N is discretized in steps of  length q, and fl is 
held fixed as N ~  or, so r/-* 0. (Here f l =  I/kBT, where T is temperature  
and kB is Boltzmann's  constant.)  The M in ( lb )  is the mass of  the particle, 
while h is Planck's  constant  divided by 2n. The e is the charge of the 
oscillating particle within a molecule resulting in a dipole moment  s r = er  r ,  
where the subscript p indicates the position along the path, and r r is the 
position within the molecule. The ~b(s r) is the potential within which the 
particle oscillates. The path integral is restricted by the condition that the 
endpoints of each path are at the same position such that we have SN = SO. 
Expression (1) may then be interpreted as the classical parti t ion function 
of a flexible polymer  chain of length fl = qN in a potential q~(s r) such that 
the chain forms a closed loop or ring. 

In the present analysis the position r r does not represent an internal 
coordinate of  a molecule creating a polarization Sp. Instead it is the posi- 
tion of the particle within a container  of  volume V. Thus it is more  natural  
to use rr rather than Sp as a variable in the present application. This is 
accomplished in (1) by replacing Sp with rp and letting e = 1. The potential 
~b(Sp) will fur thermore be set equal to zero, since the particle will no longer 
be tied to a certain place, except that it must be kept within the volume V, 
which has macroscopic  dimensions. This latter requirement can be met by 
restricting one of the integrations, e.g., the one with respect to to, to the 
volume V while the remaining ones are free. The error introduced by this 
procedure can be neglected for macroscopic  V, since it will occur only for 
configurations such that  rp, p t> !, is close to the surface of the container,  
and the stiffness and limited length of the polymer  will restrict the relative 
distance r p - r o  to be microscopic. 

Now we consider the parti t ion function for an arbi trary number  of 
particles. If these particles do not interact, the parti t ion function is nothing 
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but the product of single-particle partition functions if we regard the 
particles as distinguishable, i.e., if the particles are not identical or if we 
use Bolzmann instead of Bose or Fermi statistics when they are identical. 
Then the extension to pairwise interacting particles is effected simply by 
replacing the potential ~(sp) in (1) with pair potentials. Thus for N o 
particles such a partition function will be ZN0=limu_ 7~m where ~ N o  ~ 

Z ~ u ) -  f exp - N~ - -  + 1 p = 0  l~i<~No 2~ ( r i ' p  --ri 'p)" 

} No N -  I 

+ q ~ ~b(rcp) l--I I-I (AdL.q) (2a) 
I<~i<j<~No i=l q~O 

and (for three-dimensional systems) 

M _ ( t r ~  3/2 
a -- h- 5 ,  A - \ ~ n ~ J  (2b) 

Here the ~(rij, p ) is the pair interaction, with r i j . p = r i . v - r j . p  the relative 
distance between particles i and j at position p along the paths formed 
in the polymers. (The 4~ can also be time-dependent, such as a radiating 
electromagnetic field. Then r,zp ~ r,zm =ri.v-rm/22"23~) 

For identical particles that are treated as bosons or fermions the 
partition function (2) is not appropriate. Symmetry requirements have to 
be imposed on the wavefunctions, which will reflect itself in the partition 
function. The modification appropriate to this situation has been estab- 
lished; see, e.g., the book by Feynman and HibbsJ 31 In expression (2) the 
endpoint of each polymer, representing a particle, is located at its starting 
point, forming a single polymer loop. However, for identical particles the 
symmetry requirement implies that all endpoints should be permuted in all 
possible ways to form a set of path-integral contributions. For bosons, all 
of these contributions are added to yield the No-particle partition function 
when divided by No!, the number of permutations. For fermions, however, 
these contributions are added when the permutations are even and sub- 
tracted when they are odd. So we can write 

Zu~= lim Z (m (3a) No N ~ c:t:, 

z,N, 1 Z zk 'iP) 
N,, = No ~ I vl 

(3b) 
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for the approximating sums to the No-particle partition function. Here the 
P denotes the permutation ofendpoints over which to sum, and (N) ZNo (P) is 
the corresponding result with this permutation performed in the path 
integral (2). ( P =  I will indicate unpermuted endpoints.) For fermions we 
let z~N0)(P) include a minus sign when P is an odd permutation. 

We may write down the grand partition function 

Zg= ~ ePuN~ (4) 
NO = 0 

where ZNo is given by (3), and p is the chemical potential. Now we want 
to investigate whether the Zg can be interpreted as the grand partition 
function of some classical system. We have already noticed that expression 
(2) may be interpreted as the partition function of a classical polymer 
problem. For identical particles such an interpretation does not seems as 
obvious any longer due to the permutations required in (3). However, after 
closer examination we shall find that the grand partition function (4) can 
indeed be interpreted as that associated with a classical polymer mixture. 

In expression (2) the endpoint of the path for a particle is the same as 
its starting point. Accordingly, the path forms a ring polymer consisting of 
a single loop of length fl =r/N. The other particles form similar ring 
polymers consisting of single closed loops, and (2) is the partition function 
for a fluid of such single polymer loops. 

In expressions (3) and (4), however, the endpoint of the path, 
representing a quantized particle, may be the same as the starting point of 
another particle, and the endpoint of that may again be the starting point 
of a third particle, etc. After q such steps we may come back to the starting 
point of the first particle with which we started, and the process of linking 
single polymers of length fl into longer ones stops. This new, longer 
polymer of length qfl will also form a ring or closed chain, since the start- 
ing point and the final endpoint are the same; thus this new ring is a coil 
consisting of q loops. (If one likes, the process of forming longer coils by 
permutation may be regarded ~6) as a chemical reaction where the basic 
single loops are dissociated from each other and then associated together 
into coils of various length with an associated chemical equilibrium for the 
number of these species.) Thus we get a fluid mixture consisting of coils of 
various length. A natural question is whether this fluid mixture can be 
regarded as a classical mixture problem for which the methods of classical 
statistical mechanics are applicable. If so, we can reformulate (4) into a 
classical mixture problem for polymers. 

Consider one of the terms in the sum (3). It represents an approx- 
imating sum to the partition function for No particles. Due to permutation 
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of endpoints of paths it will further represent a mixture of polymer coils of 
various sizes. Let Nq be the number of coils consisting of q loops (i.e., chain 
length qfl). Then obviously 

N O = ~ qNq (5) 
q = 0  

Any of the coils with q loops will have the same properties and can thus 
be regarded as identical polymers, i.e., they represent one kind of species in 
the polymer mixture. Thus any permutation P that yields the same number 
gq (q = 1, 2, 3,...) will produce the same contribution Z~)r All such P's NO ~'At" 

can be added together to yield the sum of such contributions. Thus if there 
are P({Nq}) such permutations, we can write 

P( { Nq} ) ZN0(P) = Z({ Nq} ) (6) 

To compute P({Nq}), consider a permutation that yields the particle 
numbers or numbers of various coils Nq. The No loops can be distributed 
among the various coils in 

No! 
1-'Iq(q!) Nq 

ways. However, coils consisting of the same number of loops q can be 
exchanged without creating a new permutation. This reduces the number of 
different distributions to 

No! 

I-Iq Nq! (q!)N, 

For each such different distribution the single loops may be exchanged 
within each coil creating a number of ( q -  1)! different permutations for 
each. (The number will not be q!, since a cyclic change of q loops in a 
closed chain does not give a new permutation.) Thus the number of 
permutations yielding the particle number Nq is 

N0! 
p({Nq})_l_iqN,t!(q!)N,~i~[(p_l)!]Ne= No! (7) r l-'[q q,V~ gq r 

The basic permutation of exchanging two polymer or path endpoints will 
either split a coil into two smaller ones (when the endpoints are within one 
coil) or it will create a combined coil out of two coils (when the endpoints 
are in separate coils). Accordingly, permutations that preserve coils must 
be even. Thus we find that permutations of endpoints that give the same 
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particle number Nq must either be all even or they are all odd, since preser- 
vation of these numbers requires an even number of permutations. Thus 
even for fermions all contributions will add up with the same sign (either 
+ or - ) .  

Expressions (6) and (7) may then be used in the partition function (3), 
where instead of summing over permutations, one now sums over the 
particle numbers Nq under the restriction N O = Zq  qNq. When further used 
in the grand partition function (4) this latter restriction can be taken away, 
and one can sum freely over the Nq. We find therefore 

{Ny} 

For bosons the + sign is always used, while for fermions the + sign is 
used for even permutations and the -s ign  is used for odd permutations. 
The rules for the sign in the latter case are easily derived. Creating a coil 
of two loops requires the permutation of two endpoints (from single loops). 
Thus each such coil will imply a factor - 1 .  Similarly a coil of three loops 
will require an even permutation, yielding a factor + 1. Continuing in this 
way, one sees that coils with an even number of loops each involve an odd 
permutation and each yields a factor - I ,  while coils with odd numbers of 
units each involve an even permutation and each yields a factor + I. Thus 
for fermions we can make the replacement in (8) 

E1 ~ [ ( - l ) q - ' ]  Nq (9) 

(while for bosons +1 ~ 1). 
We now note that (8) has precisely the form of the grand partition 

function for a mixture of polymer coils where the chemical potential/Zq for 
a coil of q loops is identified as 

f ~ e pl'q for bosons 

eP~'~ = q - i (10) 

[ ( -  ~ eP"q for fermions 

For fermions the e puq is clearly negative when q is even. This will imply 
negative densities for such coils. For classical partition functions the e p~', 
(and thus the densities) are always considered positive. In this regard our 
final results are going beyond an isomorphism with realizable classical 
polymer models. With this caveat, one sees that the Z({Np}) in expression 
(8) can be identified with the N ~  oo limit of a classical partition function 
for polymer coils that interact via a pair interaction. This quantity is noth- 
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ing but the partition function (2) with the endpoints of paths permuted. 
[In the notation of (3b) the 7~N~ of (2a) is INI ~No ZNo (I), where I is the identity 
permutation corresponding to unpermuted endpoints.] These permutations 
have the effect that the single loops are incorporated into longer closed 
chains or coils. These coils interact via the pair interaction $(r~.p), but it 
should be noted that there will be multiple loop-loop interactions between 
two coils since each loop in a coil will interact with every other loop in 
other coils and in the same coil. 

The final result (8), along with (10), is equivalent to the result 
obtained by Chandler and Wolynes/61 However, they do not incorporate 
the factor 1/q into their equations in quite the same language that we have 
used. Instead it appears via a chemical equilibrium constant for coils con- 
sisting of q loops. The result (8), without the explicit observation embodied 
in Eq. (10), was obtained by Montroll and WardJ 41 

2.2. Equat ion of S t a t e  for  Ideal Fermions and Bosons 

When there are no interactions between particles, i.e., the ~(r0..p ) in 
(2) is zero, the grand partition function (8) will be the one for noninter- 
acting polymer coils. Thus the equation of state will be the one for an ideal 
gas mixture. The pressure p is then given by 

tip= ~ pq (11) 
q=]  

where pq is the number density of polymer coils consisting of q loops. The 
total number density p of particles '(fermions or bosons) will be 

p= ~ qpq (12) 
q = l  

since a coil of q loops represents q particles. So far the pq are unknown. 
For their determination we turn to the partition function (2). With 
~b(rij.p) -- 0 the path integral factorizes into Gaussian path integrals for each 
polymer. Such integrals can be performed by standard methods which we 
have no reason to review at this point. The result must be in accordance 
with the well-known partition function for a quantized particle in a box of 
volume V, and it is, yielding 

1 
Rl = ZNo=,(I)=-~3 V 

(13) 
flh 2 h 2 

A2=21r q -N=2~  - -  
~r M 2~Mk T 
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The A is the well-known de Broglie thermal wavelength for quantized 
particles. Thus we need the result for a coil consisting of q units. Such coils 
are obtained by permutations of the endpoints of paths in (2). The path 
integral for such a coil is then seen to be nothing but the one for a single 
loop, except that its length is q time as long. Thus we simply replace the 
fl in (13) with flq to obtain for an arbitrary coil 

1 
Rq = q-3/2R l = q3/2A3 V (q = 1, 2, 3,...) (14) 

The canonical partition function with particle numbers Np is thus 

Z( { Np} ) = I--[ R~" (15) 
q 

which inserted in (8) yields 

Zg~..~q ~ (~'qV)Nq 

Nq = 0 Nq [ 

where we define the fugacity by 

exp(.) Vy'. "u 16a) 

1 
Z q = e/jt'~ Rq -~ (16b) 

With (10) and 14) inserted into (16b) we find 

1 I (q 
2q=-~3(+l)q- q5/2; ( =epl' 

The pressure p is then 

1 
f l p = p l n Z e = E  z u 

q 
The number densities are 

(17) 

(18) 

1 N 1 0 In Z~ 0(pp) 
P q = v <  ~) VO(~Uq) z~ OZq - z ~  

The total number density is 

1 0 In Zg 1 
P V Oflp ~ " E q ( u q ) = E q z q  q q 

(19) 

(20) 

Equations (18)-(20) are the same as Eqs. (11) and (12). Use of Eq. (17) 
will then fully specify the equation of state by which pq = =. is explicitly 
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determined in terms of ( =  e p~'. The result we have obtained here as an 
ideal-gas polymer mixture is recognized as the well-known exact equation 
of state for an ideal boson or fermion gas. 

In our considerations here we have not treated degeneracy due to spin. 
However, if there are no spin interactions, such degeneracy can be easily 
accounted for. Particles in different spin states may be regarded as being 
different, so that exchange effects do not take place. In the way things are 
done here, this means that different particles do not enter the same polymer 
coil, and in the noninteracting case this means that they give independent 
contributions to the equation of state. 

3. FURTHER RESULTS 

3.1. Debye Shielding in Quantum Systems 

For a classical fluid the Debye inverse shielding length K for the 
Coulomb interaction between charges is 

K 2 = 4rcflpQ 2 (21) 

where Q is the charge. For a multicomponent system this generalizes to 

K 2 = 4~fl Z piQ~. (22) 
i 

Using (22) for quantized fermion or boson systems, we find 

K2 = 4ttfle 2 ~, pqq2 (23) 
q 

since the charge of a polymer coil will be qe when it consists of q units 
when e is the charge of a single particle. Utilizing (17), (19), and (20), one 
sees that (p = Z q  Pqq) 

x2 = 4./~e2( ~ = 4~/~e2 ra(/~/~)] - ' = 4n/~pe2 [~ g L-D-p _1 - -  (24) 

This result is precisely what one will obtain by more standard methods 
invoking linearized Debye-H/ickel theory, utilizing the equation of state for 
ideal fermions (or bosons). (Fermions are usually considered at T = 0 . )  

3.2. Distr ibution Function for Single Free Particles 

We want to evaluate the spatial correlation or probability distribution 
for two positions separated by a distance ), (or f l - 2 )  along a single 
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polymer loop. To do so we start with the integrand of Eq. (la) and utilize 
the fact that integrals will be Gaussian. Taken together with earlier results 
for the polarizable fluid, this will simplify the calculation. Since the result- 
ing probability distribution must be Gaussian, it will be sufficient to know 
the average ( r  2) = ( ( r q - r p )  2) [ 2 = r / ( q - p ) ,  rp=Sp/e]. As in the case 
of the polarizable fluid, ~7) Fourier-transform variables can be usefully 
introduced 

1 N 
aK--N/~p~__ I eiKqPSp (25) 

ffomwhich the average 

1 
(aKa_K)  = 3 o.2(K2 + (ho)o)2) (26) 

follows. 
By Fourier inversion the ((Sq--Sp) 2) can be found. Its value will 

depend upon ft. However, in the present case we will simplify to fl--* 0o. 
This is because we will specialize to the case of 090 ~ 0 in which only 
relative separations will be relevant. Then the sought probability will be 
proportional to the probability for separation r = r q - r p  after imaginary 
time 2, multiplied by the probability of return to the start after imaginary 
time f l - 2 .  With (2b) inserted we get [ 2 = q ( q - p ) ,  fl--* ~ ]  

1 f'~' e-ika dk 3 e h~:~ 
SqSp) =2--~n -o~ ( a r a _ K )  2tr ho9 o (27) 

Taking the limit 0%-* 0, with rp = sp/e, one obtains 

1 
( r  2 ) = ( ( r q -  re) 2) = 3 ~ 2 (28) 

where a is now redefined to a =  M/h 2 as in Eq. (2b). The corresponding 
probability distribution will be 

F~(r) = \ ' ~ j  exp ( - ~ - j  (29) 

The sought probability distribution will be 

p~(r) F~.(r)Fp_~.(r) ( cr ,~312 { ~rrZ ~ 
-- G ( O )  = 2 ~ ( 1 - - V ~ ) /  exp -- 2 ,~ (1 - - 'VP)3  (30) 
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Its spatial Fourier transform will be 

~a(k)=exp - ~ 

373 

For use in hypervertices in the graphical representation of graphs in our 
y-ordered procedures in Section 3.4 and in other connections the Fourier 
transform with respect to it is needed, too. However, the result cannot be 
integrated analytically, but we can go back to Eq. (30) and regard the 
product Fa. Fp_ a as a Fourier transform of a convolution in k-space. Thus 

where 

( p),,2 
P,~(k) = \2--~a j fPa(k')Pa_~(lk-k'l)ak' 

A Fourier transform with respect to 
performed, 

(32) 

1 
P x ( k ) = e x p ( - ~ a a 2 k  2) (33) 

imaginary time it can now be 

PK(k) = P~(k)e ~Ka d2 

=\~na,/{ fl ,]3/2 f exp[_(1/2a)flk,2]t.~_ ( 1 ~ ) - ~  Z (-~- ~ )--~ -exp[- (1 /2o ' )  f l ( k - k ' )  z ] dk' (34) 

With a=M/h 2 one notes that the exponentials are nothing but the 
Maxwell distributions for classical particles. Thus we can introduce 
moments p = h k '  (or velocities v=  p/M) and the Maxwell distribution 

fo=fo(p)=~-~-~) exp - ~__Mp2 (35) 

Along with the interchange k' ~ k -  k', this then leads to 

I 1 A)fodp Px(k)=f (iK+A iK- 
2A 

- IK2+Azfod p (36) 
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where K = 2rrn/fl with n = integer and 

A = E( Ihk - Pl) - E(p) 

with energies 

Hoye and Ste l l  

(37a) 

1 
E(p) = - ~ p ' -  (37b) 

3.3. Distr ibut ion Funct ion for Free Fermions and Bosons 

The distribution function for a pair of points along a single polymer 
loop can be extended to polymer coils in a straightforward way. Again we 
base our derivations upon Eq. (29) for F~(f). For a coil consisting of n 
loops the total length of the polymer will be nil. Due to periodicity, 
imaginary time 2 is obtained for distances 

2p = 2 + pfl, p = 0, 1 ..... n - 1 (38) 

along the polymer. The distance remaining before returning to the start is 
then 

n f l - 2 p =f l - 2 +q f l ,  q = n - l - p  (39) 

Using (30) and (32), we find that the probability distribution for two 
points separated by imaginary time 2 in a polymer of length nfl is thus 

where 

n 1 3 / 2  ~(n) f P~. ( k ) =  ~ (nil ']  :~.<k') P . _ ~ ( k " ) X " Y  q dk' 
p=o \2rtcr / 

(40) 

X = P p ( k ' )  and Y=Fp(k") ,  k" = k - k '  (41) 

with &(k) given by (33). 
The pair distribution function we require is now obtained by weighted 

summation over the various coils. The weighing factor for coils of n loops 
is np,,; the factor n represents the n choices among loops for point 1. [The 
n choices for point 2 are included in the summation over p in Eq. (40).] 
For free particles the p ,  is determined by Eqs. (17) and (19) as 

_ U 1 _ 1 ) "  1 
P" = T ( + n 5/z 

(42) 
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with A : =  2nfl/a. Thus with (40) inserted, the pair distribution functions we 
seek becomes 

S(2, k) = ; l p n  F ~, ~np 

1 P;.(k') P/, ~(k") dk' (43) 

with k", X, and Y as defined by Eqs. (41). Here the upper sign refers to 
bosons, while the lower one refers to fermions. A Fourier transformation in 
imaginary time can now be performed precisely as done in Eqs. (34)-(36), 
since X and Y do not contain 2. We find 

~(K, k) - (2rrh) 3 iK-+ A i K -  d dk' (44) (1 -T- ffX)( i T~Y) 

when form (36) is generalized. 
The distribution function ~(K, k) fully describes static and dynamical 

correlations for free bosons and fermions at equilibrium, i.e., the dynamics 
of single particles and pairs of particles within coils due to exchange effects. 
Thus g(K,k) is also the Fourier-transformed response function of the 
system when a small force is applied. In this case the K is given by 
K= -ihco, where m is frequency, i.e., K is imaginary frequency. This iden- 
tification was demonstrated by Hoye and Brevik. ~22~ The ~(K, k) will also 
be the hypervertex to lowest order in y-ordering in the graphical represen- 
tation of our 7-ordered expansions, replacing the transformed reference- 
system pair correlation function used in the classical case. Compared to the 
classical case an added feature will be that density distributions for the 
polymer coils will be affected by perturbing interactions. However, to 
lowest order in ~, this effect can be neglected. 

Since ~(K, k) describes the dynamics of the system, we note that the 
kinetic theory for systems close to equilibrium as well as the purely static 
properties of equilibrium systems can be obtained from it. 

3.4. The Chain Bond and Excess Free Energy 

To form a chain bond, the perturbing pair interaction in Eq. (2a) is 
needed. To evaluate it, one must perform convolutions in real space and 
imaginary time. Due to translational invariance, Fourier transform 
methods can be utilized. This is precisely as in the classical case except that 
here the fourth dimension (cyclic of length fl) of imaginary time is included. 
For the quantum (polymer) problem the ~(K, k) of expression (44) is then 
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nothing but the hypervertex (as long as the density distribution is unper- 
turbed). The Fourier-transformed pair interaction ~,(k) will be precisely as 
in the classical case. Here ~'(rij)=r when comparing with Eq. (2a). 
Note that with instantaneous interaction the ~(k) does not vary with K. 
With time-dependent interactions the K dependence will enter such that ~221 
~(k)--, ~(K, k). As in the classical case, the chain bond is now easily writ- 
ten down as 

~(K, k) = - ~ ( k )  (45) 
1 - • ( K ,  k ) ( - t ~ ( k ) )  

with g(K, k) determined by Eq. (44). Note that compared with the classical 
case the factor fl is dropped in front of ~(k). Instead it is incorporated in 
~(K, k) via with the Fourier transform in imaginary time. 

The perturbed structure factor to first order in ),-ordering is then given 
by 

r k) = ~ +  g ~ g -  ~(K,k) (46) 
1 - ~ ( K ,  k ) (  - t ~ ( k ) )  

This function describes the perturbed quilibrium correlations as well as 
dynamical ones [due to its dependence upon frequency (K= -//1o))]. As in 
the classical case, the excess free energy to first order in y-ordering can be 
evaluated from the ring graphs. Use of Fourier transform methods in 
connection with convolutions then generalizes the classical result to 

1 1 
I =  2 (2~)3 ~ I dk ln[ 1 - ~(K, k)( - ~ ( k ) ) ]  (47) 

Note that (47) when expanded also includes the term ~ that represents 
the direct self-interaction of a polymer with itself. It has the same effect as 
adding a piece to the chemical potentials. Since the ~ is linear in the 
polymer densities pq, it will not appear explicitly in the pressure--only 
indirectly via the chemical potentials. The quantity I is -flF, where F is 
excess Helmholtz free energy per unit volume. Thus all thermodynamic 
quantities can be derived from it. A challenging problem in this connection 
is to evaluate the change in density distributions due to the perturbations. 
First of all, for both fermions and bosons the relative concentrations of 
polymers of different lengths will change. This must be taken into account 
because it will influence reference-system quantities like the pressure ( 11 ) to 
first order in y, but we anticipate that this can be done approximately in 
a straightforward way. More challenging will be the evaluation of the 
change in polymer configurations for single polymers or polymer coils. For 
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polarizable particles this latter problem could be solved exactly in the MSA 
since the resulting distribution of configurations were Gaussian, too. This 
will not be the case here, so some approximation has to be made (an 
approximation of Gaussian type but with perturbed parameters is an 
obvious starting point). The problem is of great intrinsic interest since it 
describes the correlations (or dynamics) of single particles due to inter- 
action of a particle with itself via the medium. The well-known polaron 
problem is of this type. For weak perturbations, Hoye and Brevik con- 
sidered this type of problem when investigating the friction force between 
two oscillators that moved with respect to each other. ~2~) When regarding 
the polymer system as a multicomponent mixture, the density distribution 
of polymer configurations is again determined via the chemical potentials. 

3.5. Quantum lattice models 

In quantum lattice models (tight-binding, Hubbard) the electrons of a 
system are located on the sites of a regular lattice. In its quantum mechani- 
cal description, the electrons jump from site to site by quantum fluctuations 
described by a transition rate. Our results for the continuum case extend 
in a straightforward way to this case. Whether the particles are bosons or 
fermions, there will be an equivalent classical polymer problem, and in 
the present case the polymer will be located on lattice points. In imaginary 
time the free (noninteracting) particles will be described by random walks 
with jumping rates proportional to the quantum transition rate. 

Consider first one dimension for simplicity. For a random walk that 
starts at the origin, the probability distribution after a small time step r/ 
will be described by the Fourier transform 

Fq(k) = 1 -rlC( 1 - cos k) (48) 

if jumps are restricted to nearest neighbors. The c is a constant. The 
random walk will be a Markov process, so by repeated time steps one will 
have convolutions in r-space. After time 2 a number of ;t/r/such steps have 
been taken. From the properties of convolutions, the Fourier-transformed 
probability distribution will thus be 

P~(k)  = lira [ P . ( k ) ]  ;'/" = l im  [ 1 - q c ( 1  - co s  k ) ]  am = e x p [  - 2 E ( k ) ]  
q ~ 0  q ~ o  

(49) 

with E(k) = c(1 - c o s  k). 
The E(k) will be nothing but the energy spectrum for the free particles. 

This becomes clear when comparing with Eqs. (33) and (37) (p---, hk) for 

822/77/I-2-26 
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the continuum case. Equation (49) is easily extended to three dimensions to 
obtain 

Fa(k) = exp[ - 2E(k) ] (50) 

For a simple cubic lattice with jumps only to nearest neighbors, one has, 
for example, 

E(k) = c[ 1 - �89 k x + cos k:, + cos kx)] (51) 

where the k is restricted to the Brillouin zone 

- n  ~< kx, ky, kx~<~z (52) 

The evaluation of the structure function ~(K, k) [ Eq. (44)] and its applica- 
tion to Eqs. (45)-(47) will now be as in the continuum case. The only 
change is that integrations over k will be restricted as given by Eq. (52) and 
the P~(k) of Eq. (33) is replaced by expression (50). [This will of course 
also affect Eqs. (29)-(31).] 

Now we want the equation of state for quantized free particles on the 
lattice. For a single free particle the path integral will be the Markov chain 
that determines Fp(0). The path integral (2b) for the continuum case will 
be such a Markov chain, too, and for one particle the Fa(0) will determine 
the partition function R~. With F~(r) given by (29), Eq. (13) can be written 

R, =Fa(0 ). V (53) 

On a lattice with cells of unit volume this equation will be unchanged. In 
the lattice case F~(0) will be a probability instead of probability density, 
while V becomes the number of unit cells instead of volume, so R~ stays 
dimensionless. Likewise Eq. (14) for coils of q loops now can be more 
generally written 

Rq = Fqfl(0) - V (54) 

In terms of its Fourier transform (50) the Fqp(O) can be written 

if Fqp(O) =(--~-~n)3 dk e x p [ - q f l E ( k ) ]  (55) 

With fugacities given by (16b) we then have 

Zq = eP'UqRq I ( -1- 1 )q-  1 l_. (qFq#(O) 
q 

(56) 
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So the equations of state, Eqs. (11) and (12), becomes [pq=Zq from 
Eq. (19)] 

fiP ---- (-~)3 f d k [  YFln(l ~ X ) ]  (57) 

(27r)- 1 ~ ( X  (58) 

where, similar to (41), 

X= Fp(k) = exp[ -fiE(k)] (59) 

Equations (57) and (58) provide the well-known equations of state for frec 
bosons and fcrmions expressed in terms of integrals over the energy levels. 

For the lattice case at high temperatures, i.e., fi ~ 0, this equation of 
state becomes especially simple. Then the return probabilitics Fqa(O)---, l, 
i.e., the random walk has not had time to make one move. Thcn also X can 
be replaced by l, and Eqs. (57) and (58) become 

fip = Vln( 1 V ~) 
(60) 

p =  

Especially for fermions these simple equations are already interesting. 
Elimination of ~" leads to ( + signs) 

and 

tip= -In(1 - p )  (61) 

fip = In C = In[ p/( l -p)] 

Equation (61) is prcciscly the equation of state of the classical lattice gas 
that forbids multiple occupancy, i.e., frcc fcrmions act as particles with hard 
c o r e s .  

Above we have considered only the case with one component, while 
the usual Hubbard model deals with two components corresponding to 
electrons with spins respectively up and down. With no spin interaction 
present the two spin states can be regarded as different components of a 
mixture, i.e., the isomorphism with the classical polymer mixture still holds. 
Before an interaction is turned on, the up and down spins are independent 
of each other, and they will add independent (fermion) contributions to 
the equation of state (11). For the structure function (44) there will now 
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be two independent (but equal) contributions, as it becomes a matrix 
where the off-diagonal elements are zero (since the two components are 
uncorrelated). Likewise the perturbing interaction ~,(r) will become a 
matrix, and Eqs. (45)-(47) become matrix equations. In Eq. (47) the trace 
will be taken such that I becomes scalar. In the simplest versions of the 
Hubbard model up and down spins will only interact when they occupy the 
same site. Since equal spins cannot occupy the same site anyway, the inter- 
action between the latter can then be dropped. With this the ~(r) [and 
~(k)]  will have 0 as its two diagonal elements. 
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